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ABSTRACT
Mitochondrial disease is a diverse group of clinically and genetically complex disorders caused by pathogenic variants in nu-
clear or mitochondrial DNA-encoded genes that disrupt mitochondrial energy production or other important mitochondrial 
pathways. Mitochondrial disease can present with a wide spectrum of clinical features and can often be difficult to recognize. 
These conditions can be devastating; however, for the majority, there is no targeted treatment. In the last 60 years, mitochon-
drial medicine has experienced significant evolution, moving from the pre-molecular era to the Age of Genomics in which 
considerable gene discovery and advancement in our understanding of the pathophysiology of mitochondrial disease have been 
made. In the last decade, in response to the urgent need for effective treatments, a wide range of emerging therapies have been 
developed, driven by innovative approaches addressing both the genetic and cellular mechanisms underpinning the diseases. 
Emerging therapies include dietary intervention, small molecule therapies aimed to restore mitochondrial function, stem cell 
or liver transplantation, and gene or RNA-based therapies. However, despite these advances, translation to clinical practice is 
complicated by the sheer genetic and clinical complexity of mitochondrial disease, difficulty in efficient and precise delivery of 
therapies to affected tissues, rarity of individual genetic conditions, lack of reliable biomarkers and clinically relevant outcome 
measures, and the dearth of natural history data. This review examines the latest developments in the pursuit to identify effec-
tive treatments for mitochondrial disease and discusses the barriers impeding their success in translation to clinical practice. 
While treatment for mitochondrial disease may be on the horizon, many challenges must be addressed before it can become a 
reality.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
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1   |   Introduction

Mitochondrial disease (MD) is a diverse group of disorders 
that disrupt mitochondrial energy generation by directly 
affecting oxidative phosphorylation (OXPHOS) or altering 
other essential mitochondrial pathways [1, 2]. OXPHOS oc-
curs in the inner mitochondrial membrane, where electron 
transport in the respiratory chain is coupled with ATP pro-
duction. OXPHOS was first described in 1961 [3] followed by 
the first clinical description of mitochondrial dysfunction in 
Luft disease the following year [4]. Mitochondria are integral 
to cellular metabolism and are critical for calcium buffering, 
lipid metabolism, maintaining cellular ion homeostasis, for-
mation of reactive oxygen species (ROS) and integrating sig-
nalling pathways that govern cell survival and apoptosis [5]. 
Mitochondria adapt to cellular energy demands through dy-
namic processes such as fusion, fission, biogenesis (increasing 
mitochondrial mass) and mitophagy (mitochondrial quality 
control by selectively removing dysfunctional mitochondria 
from the cell) [6]. The biology underpinning mitochondrial 
function has been extensively reviewed elsewhere [5, 7, 8].

The minimum birth prevalence of MD is estimated to be 1 in 5000 
[9] with a minimum point prevalence of 12.5 per 100 000 in adults, 
so most individual MDs are exceedingly rare [10]. MD can manifest 
at any point in life, is highly variable with a range of clinical signs 
and symptoms, predominantly affecting organs with a high energy 
demand, particularly the heart, muscle, and brain. MD is caused 
by pathogenic variants in nuclear encoded genes or mitochondrial 
DNA (mtDNA). The human mtDNA is a double-stranded, circular 
DNA encoding 13 protein subunits of the respiratory chain, two ri-
bosomal RNAs, and the complete set of 22 transfer RNAs required 
for mitochondrial protein synthesis [11]. The pathogenic role of 
mtDNA variants in human disease was established in 1988 with 
the identification of large-scale deletions in individuals with my-
opathy and a maternally inherited mtDNA single nucleotide vari-
ant in families with Leber hereditary optic neuropathy (LHON) 
[12, 13]. Mitochondrial medicine has advanced considerably in the 
last 60 years, with the discovery of over 400 nuclear-encoded genes 
implicated in MD [14] and the enhanced understanding of patho-
logical mechanisms underpinning disease paving the way for the 
development of therapeutic strategies for MD.

There are unique challenges to successfully identifying therapeu-
tic strategies for MD. The translation of potential therapies from 
preclinical studies to clinical practice has been hampered by the 
genetic and phenotypic complexity of MD, challenges in delivery 
of therapies into the mitochondria, lack of reliable biomarkers and 
outcome measures or well-described natural history and the diffi-
culty of recapitulating the pre-clinical findings from animal mod-
els to human disease. Given the rarity of individual MDs, novel 
therapeutic strategies have often been described in small case re-
ports or open-label studies which are difficult to interpret given the 
inherent bias and confounding factors involved with such studies.

2   |   Current Management Approaches

For most primary MD, there is no currently available targeted 
therapy. Management is focused on symptoms and surveillance 
for the associated complications of MD.

2.1   |   Treatable Disorders

For a few specific MDs (predominantly defects of cofactor me-
tabolism), there are targeted treatments available with a spec-
trum of efficacy (Table 1).

2.1.1   |   Coenzyme Q10

Coenzyme Q10 (CoQ10) shuttles electrons in the mitochondrial re-
spiratory chain and, in its reduced form, is an effective antioxidant 
buffering free electrons, restoring other antioxidants (vitamins E 
and C) and protecting cells from oxidative damage [28]. It is com-
monly prescribed in MD, but clinical trials have shown conflict-
ing evidence for its benefit (NCT00432744) [29], except in primary 
CoQ10 deficiency where it has been shown to lead to favorable out-
comes in some (< 50%) individuals, although variable response has 
been reported which may be contributed to by inadequate uptake 
across the blood-brain barrier [15–17, 30, 31]. Individuals reported 
to have objective or subjective improvement include those with 
pathogenic variants in COQ2, COQ4, COQ5, COQ6, COQ8A, and 
COQ8B, with reversal of renal disease or improvement in neuro-
logical features such as ataxia. Modified precursors of the quinone 
ring of CoQ10 such as 2,4-dihydroxybenzoic acid have shown some 
promise in pre-clinical studies, but further work is warranted to 
determine if this is a better alternative strategy [32].

2.1.2   |   Thiamine

Thiamine (B1) is converted to its active form thiamine pyrophos-
phate by the enzyme thiamine pyrophosphate kinase encoded 
by TPK1 and subsequently acts as a cofactor for mitochondrial 
alpha-ketoacid dehydrogenases. Defects in thiamine metab-
olism show variable responses to thiamine supplementation 
[19]. Thiamine supplementation in TPK1 deficiency resulted 
in significant improvement in clinical symptoms in 50% of in-
dividuals [20]. Early treatment with high-dose biotin and thia-
mine in SLC19A3 deficiency (thiamine transporter resulting in 
biotin-thiamine responsive basal ganglia disease) is associated 
with rapid clinical improvement and excellent outcomes [18, 33], 
thought to be attributed to biotin influencing SLC19A3 expres-
sion [34]. Some individuals with PDHC deficiency also have a 
good response to thiamine; however, this response is variable 
and may be related to specific pathogenic variants in the E1α 
subunit, impacting the binding of thiamine pyrophosphate [21].

2.1.3   |   Biotin

Biotin (B7) is a cofactor for five carboxylases (of which four 
are in the mitochondria) that play roles in many metabolic 
pathways. Biotinidase is the enzyme responsible for recycling 
protein-bound biotin into free biotin. Lifelong biotin supplemen-
tation for biotinidase deficiency is well tolerated and can prevent 
the development of the neurological and cutaneous phenotype 
[22]. Prompt biotin supplementation is also recommended in in-
dividuals with holocarboxylase synthetase deficiency, which is 
associated with a defect in the enzyme that binds biotin to the 
biotin-dependent carboxylases, although their clinical improve-
ment is not as robust as in biotinidase deficiency [23].
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2.1.4   |   Riboflavin

Riboflavin (B2) is the precursor of the electron carriers flavin 
adenine dinucleotide (FAD) and flavin mononucleotide (FMN), 
which serve as cofactors for respiratory chain complex I and II, 
plus other mitochondrial dehydrogenases involved in multiple 
mitochondrial processes [25, 35]. Riboflavin has a positive effect 
on clinical symptoms in individuals with dihydrolipoamide de-
hydrogenase (E3) deficiency [26], FAD synthase and transporter 
deficiencies [25] plus respiratory chain complex I disorders, spe-
cifically ACAD9 deficiency [27, 36]. A large multinational co-
hort study of individuals with ACAD9 deficiency found that 65% 
had a positive clinical response to riboflavin supplementation 
[27]. High-dose riboflavin improved clinical symptoms and bio-
chemical abnormalities in most individuals with late-onset mul-
tiple acyl-coA dehydrogenase deficiency (MADD) and should be 
considered in all these individuals [24].

2.2   |   Nutritional Supplements

The use of nutritional supplements (vitamins, cofactors and 
antioxidants) for MD is widespread despite the dearth of high-
quality evidence for their efficacy in the majority of MD. Use of 
these supplements is widely disparate, ranging from single sup-
plements to a range of nutritional supplements, often referred 
to as a “mitochondrial cocktail” [37]. These supplements have 
been used on a theoretical basis due to their potential impact 
on mitochondrial physiology. Examples include strategies to 
reduce oxidative stress (CoQ10, vitamin E, alpha lipoic acid, N-
acetyl cysteine) or provide deficient vitamins or cofactors (thi-
amine, riboflavin, folinic acid, and biotin). These supplements 
are generally regarded as low risk, with few reported adverse 

effects. Large clinical trials for these supplements have not oc-
curred for several reasons, including the ease of access. In 2012, 
a Cochrane review found that there was no clear evidence sup-
porting the use of these vitamin and cofactor supplements in MD 
[29]. A review of these supplements was published in 2020 [38].

2.3   |   Exercise

Individuals with MD often experience fatigue, exercise in-
tolerance, and weakness. They may be less physically active, 
which can lead to muscle deconditioning and worsening ex-
ercise intolerance. Exercise training in individuals with MD 
has not only confirmed the physiological adaptations of stim-
ulating mitochondrial biogenesis [39] and improving respira-
tory chain complex formation [40], but has also translated into 
clinically relevant improvement in muscle strength, exercise 
endurance, and quality of life [41]. Consensus recommenda-
tions from the Mitochondrial Medicine Society advise that 
endurance and resistance training are safe when instituted 
in a supervised, progressive manner beginning with low in-
tensity and short duration activity in those that are physically 
able [42].

3   |   Emerging Therapies

Numerous pharmacological and non-pharmacological strat-
egies proposed for the treatment of MD are being developed 
with many active clinical trials underway (Table 2) targeting 
a wide range of mechanisms (Figure  1). Detailed references 
for each therapy and current clinical trial numbers are listed 
in Table S1.

TABLE 1    |    Mitochondrial diseases with targeted therapy available.

Disease (OMIM) Gene/s Treatment

Coenzyme Q10 deficiencya COQ2, COQ4, COQ5, COQ6, 
COQ7, COQ8A, COQ8B, COQ9, 

PDSS1, PDSS2, and ADCK2

Coenzyme Q10 [15–17]

Biotin-thiamine-responsive basal ganglia disease 
(#607483)

SLC19A3 Biotin
Thiamine [18]

SLC25A19-related thiamine transporter deficiency 
(#613710)

SLC25A19 Thiamine [19]

Thiamine pyrophosphokinase deficiency (#614458) TPK1 Thiamine [20]

Pyruvate dehydrogenase deficiency (#312170) PDHA1 Thiamine [21]

Biotinidase deficiency (#609019) BTD Biotin [22]

Holocarboxylase synthetase deficiency (#253270) HLCS Biotin [23]

Multiple acyl-CoA dehydrogenase deficiency (#231690) ETFA, ETFB, and ETFDH Riboflavin [24]

FAD Transporter Deficiency (#616839) SLC25A32 Riboflavin [25]

FAD Synthase Deficiency (#255100) FLAD1 Riboflavin [25]

Dihydrolipoamide dehydrogenase (E3) deficiency 
(#246900)

DLD Riboflavin [26]

ACAD9 deficiency (#611126) ACAD9 Riboflavin [27]
aOMIM for individual Coenzyme Q10 deficiency genes; #607426, #616276, #619028, #614650, #614654, #612016, #615573, #614654, #614651, and #614652.
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3.1   |   Dietary Intervention

The ketogenic diet is a high fat, low carbohydrate diet that in-
creases the production of ketone bodies by stimulating mito-
chondrial β-oxidation of fatty acids. Ketone bodies are used as 
an alternate energy source for different tissues and can subse-
quently enter the tricarboxylic acid cycle via acetyl-CoA. Other 
proposed effects of the ketogenic diet include stimulation of 
mitochondrial biogenesis [43, 44] and increased expression of 
genes involved in OXPHOS [45].

Ketogenic diet is emerging as standard practice in the manage-
ment of PDHC deficiency [46, 47]. While multiple models of MD 
have reported benefits of a ketogenic diet (Table S1), the evidence 
base for ketogenic diet in humans with other MDs is inconclusive 
[48, 49]. Several case reports and observational studies have re-
ported some benefit of ketogenic diet in MD [50–52]. Many clin-
ical trials have shown that the ketogenic diet is effective in the 

treatment of non-disease-specific intractable epilepsy. A prospec-
tive open-label, controlled study of ketogenic diet in 33 individuals 
with MD found that it was well tolerated and reduced seizure fre-
quency in 76%, with the most significant improvement in individ-
uals with mitochondrial encephalomyopathy with lactic acidosis 
and stroke-like episodes (MELAS) or other mtDNA disease [53]. 
In contrast, five individuals with mitochondrial myopathy (MM) 
with single or multiple deletions were treated with a ketogenic 
diet and subsequently developed rhabdomyolysis within 2 weeks, 
resulting in termination of the study [54]. However, 2 years after 
the study, individuals were reported to have improved muscle 
strength, proposed to be secondary to muscle regeneration [54]. 
A feasibility study of the use of a Modified Atkins Diet in 20 
individuals with MM reported that only eight individuals com-
pleted the 12-week intervention, with five individuals having a 
mtDNA deletion experiencing muscle-related adverse events [55]. 
A systematic review has suggested that a ketogenic diet should be 
considered in individuals with MD who have refractory epilepsy 

FIGURE 1    |    Emerging therapies for mitochondrial disease and their mechanism of action. This illustration outlines the different mechanistic 
targets for treatment of mitochondrial disease. The mitochondria are shown in green, and the nucleus is shown in grey. Therapeutic approaches are 
represented by a purple rectangle. Specific potential therapies are highlighted in blue adjacent to the therapeutic approach. Detailed mechanisms 
of action can be found in relevant sections of the text. ADP, adenosine diphosphate; AMPK, AMP activated protein kinase; ATP, adenosine 
triphosphate; cGMP, cyclic guanosine monophosphate; CoQ, Coenzyme Q10; Cyt c, cytochrome C; ERR, estrogen related receptor; FAD, flavin 
adenine dinucleotide; GTP, Guanosine triphosphate; mtDNA, mitochondrial DNA; NAD, nicotinamide adenine dinucleotide; NO, nitric oxide; NRF, 
nuclear respiratory factor; PDHC, pyruvate dehydrogenase complex; PGC-1α, peroxisome proliferator-activated receptor gamma coactivator 1-alpha; 
PPAR, peroxisome proliferator-activated receptor; ROS, reactive oxygen species; sGC, soluble guanylate cyclase; SIRT1, sirtuin 1; TCA, tricarboxylic 
acid; TFAM, transcription factor A, mitochondrial; tRNA, transfer RNA. Created in BioRender. Christodoulou, J. (2025) https://​BioRe​nder.​com/​
r23l079.

https://biorender.com/r23l079
https://biorender.com/r23l079
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(except those with mtDNA deletion-related myopathy and pyru-
vate carboxylase deficiency) [48].

Decanoic acid is a component of the medium chain triglyceride 
ketogenic diet and has been shown to stimulate mitochondrial 
biogenesis and decrease oxidative stress [43, 44]. An open-label 
trial of K.Vita, a medical food containing a unique ratio of de-
canoic acid to octanoic acid, was shown to improve seizure fre-
quency in individuals with drug-resistant epilepsy, including 
those with MD [56]. Triheptanoin, a medium-chain triglyceride 
of three 7-carbon fatty acids, can be metabolized to provide two 
substrates (acetyl-CoA and succinyl-CoA) for the TCA cycle [57]. 
A phase I trial of triheptanoin in PDHC deficiency is currently 
recruiting (NCT06340685).

Other dietary interventions considered for MD include low 
residue diet and protein/valine restricted diets for ECHS1 and 
HIBCH deficiency. Low residue diet has been proposed to ame-
liorate the symptoms of gastrointestinal dysmotility, which is 
a common feature in MD. Low residue diet was shown to re-
duce gastrointestinal symptoms and laxative use in a phase II 
clinical trial in 28 adults with mtDNA-related MD [58] with no 
evidence for its use in children thus far. Protein and valine re-
stricted diets have been reported to be beneficial in some (but 
not all) individuals with ECHS1 and HIBCH associated MD due 
to their involvement in the valine degradation pathway [59]. 
Valine restriction has also been shown to prolong survival in a 
Drosophila model of ECHS1 deficiency [60].

3.2   |   Manipulating Mitochondrial Biogenesis

Proliferation of mitochondria is a compensatory adaptation 
stimulated by caloric restriction, cold exposure, and exercise, 
to optimize OXPHOS. Pharmacological approaches aim to cap-
italize on the signaling pathways that regulate mitochondrial 
biogenesis, which are centered around the transcriptional co-
activator peroxisome proliferator-activated receptor (PPAR) 
gamma coactivator 1-alpha (PGC-1α) [61], which interacts with 
other transcription factors including PPARs and nuclear respira-
tory factors (NRFs) to control the expression of nuclear-encoded 
mitochondrial genes. PGC-1α is post-translationally activated by 
AMPK and Sirtuin1 (Sirt1), which are themselves regulated by 
NAD+/NADH balance [61].

Bezafibrate is a pan-PPAR agonist; it has an established safety 
profile in humans as it has been used in the treatment of dyslipi-
daemias. It increases the activity of OXPHOS in cultured patient 
cells [62, 63], although a mild increase in ROS was also noted in 
DNM1L patient fibroblasts [63]. Bezafibrate has had conflicting 
results in mouse models of MD, in part due to rodent-specific hep-
atotoxicity (Table S1). A phase II, open-label, non-randomized 
trial in six adult patients with m.3243A>G-related MM demon-
strated that the administration of bezafibrate over 12 weeks re-
sulted in a reduction of respiratory chain complex IV deficient 
muscle fibres and improved cardiac function, although no 
change in exercise capacity was reported (NCT02398201) [64]. 
Conversely, there was an increase in serum biomarkers of MD, 
including FGF21 and GDF15, with alterations in amino acids 
and TCA intermediates highlighting the importance of explor-
ing long-term outcomes.

REN001 is a PPAR-δ agonist also proposed to induce mitochon-
drial biogenesis and improve fatty acid oxidation [65]. It is well-
tolerated (NCT03862846) but an international, multi-centre 
phase II randomised, placebo-controlled trial investigating its 
use in adults with MM failed to meet its primary (change in dis-
tance with 12-min walk test (12MWT)) and secondary (change 
in FACIT-fatigue scores) efficacy endpoints (NCT04535609). 
A phase II/III clinical trial in MM using another PPAR-δ ago-
nist, ASP0367, was terminated when it failed to meet the pre-
specified criteria for efficacy (NCT04641962).

Omaveloxolone is an oleanolic triterpenoid that influences mi-
tochondrial biogenesis by preventing NRF2 degradation [66]. 
Omaveloxolone was well tolerated by adults with MM in a phase 
II randomized, double-blind placebo-controlled trial but did not 
alter either peak workload in exercise testing or distance trav-
eled during a six-minute walk test (6MWT) [67]. Despite this, 
lower heart rates and blood lactate levels were noted during the 
submaximal exercise test at 12 weeks [67].

Resveratrol is a naturally occurring polyphenol that is re-
ported to induce mitochondrial biogenesis predominantly 
through activation of SIRT1 [68]. While preclinical studies in 
patient fibroblasts were promising, a randomized, double-blind, 
placebo-controlled, cross-over study of resveratrol supplementa-
tion in patients with MMs or fatty acid oxidation disorders did 
not meet its primary or secondary endpoints, with the authors 
concluding that it did not improve exercise capacity in adults 
with MM [69].

Other therapies proposed to stimulate mitochondrial biogenesis 
include 5-aminoimidazole-4-carboxamide ribonucleoside, epi-
catechin, and pioglitazone, which have yet to progress to clinical 
studies in MD (Table S1).

3.3   |   Restoration of NAD+/NADH Balance

The vitamin B3 family contains niacin (also interchangeably 
termed nicotinic acid and vitamin B3) and its derivatives includ-
ing nicotinamide riboside (NR), nicotinamide mononucleotide 
(NMN) and nicotinamide (also called niacinamide). These are 
processed by mitochondria to NAD+, which participates as a 
key metabolic intermediate for mitochondrial energy produc-
tion [70].

Disruption of mitochondrial NAD+ homeostasis is a critical 
driver of MM pathogenesis in humans. Systemic NAD+ defi-
ciency was reported in five adults with MM in an open-label 
clinical trial. Blood and muscle NAD+ was corrected to the level 
of controls following niacin supplementation, with increased 
muscle strength and mitochondrial biogenesis also reported 
[71]. Some noncompliance is reported in individuals using nico-
tinic acid, as it causes flushing [72].

NR has been examined in multiple mouse models of MD, re-
sulting in increased mitochondrial biogenesis and motor per-
formance [73, 74]. An open label trial of NR in adults with MD 
with m.3243A>G mtDNA variant or single mtDNA deletions 
has been completed with no results published (NCT03432871). 
NMN was shown to increase NAD+ levels in skeletal muscle and 
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improve the lifespan of a Ndufs4−/− mouse [75] but has not yet 
progressed to trials in humans with MD.

KL1333 acts as a NAD+ precursor and has been shown in 
MELAS patient fibroblast cells to increase intracellular NAD+ 
levels via NADH oxidation, increasing ATP levels, mitochon-
drial mass, and oxidative capacity [76]. A first-in-human study 
assessing the safety and tolerability of KL1333 and a phase 
Ia/Ib randomized, double-blind, placebo-controlled trial 
in primary MD found that it was well tolerated, with dose-
dependent gastrointestinal side effects, and suggested that 
KL133 improved fatigue, functional strength, and endur-
ance [77].

Acimipox is a niacin derivative that is used for the treatment of 
hyperlipidaemia in diabetes mellitus. Acimipox has been shown 
to increase the expression of nuclear-encoded OXPHOS genes and 
increase muscle ATP content and respiratory capacity in ex vivo 
human skeletal muscle [78]. A randomised double-blind, placebo-
controlled trial examining the change in ATP content in skeletal 
muscle in adults with MM following 12 weeks of acipimox has been 
completed, with results yet to be published (ISRCTN12895613).

NADH and NADPH can be damaged to generate a toxic form, 
NAD(P)HX, which blocks many cellular processes and dehy-
drogenase enzymes and disrupts NAD+ balance. Two highly 
conserved metabolite repair enzymes, NAD(P)HX dehydratase 
(NAXD) and NAD(P)HX epimerase (NAXE) are involved in 
NAD(P)HX repair. Pathogenic variants in both NAXD [79] and 
NAXE [80] lead to a severe and lethal pediatric neurodegenera-
tive disease that evolves rapidly following an episode of otherwise 
benign mild fever or infection in previously healthy children. A 
handful of NAXD [81, 82] and NAXE [83–88] cases have been 
treated with niacin therapy at high doses, and this appeared to 
stall clinical regression.

3.4   |   Reducing Oxidative Stress

ROS generation is a normal byproduct of OXPHOS and plays a 
role in cellular signalling. ROS are scavenged by antioxidant en-
zymes in various cellular compartments. However, in dysfunc-
tional mitochondria, excessive ROS production can outweigh 
the cellular antioxidant capacity, leading to depletion of anti-
oxidants such as glutathione [89], resulting in cellular damage 
to lipids, proteins, mtDNA, and components of the respiratory 
chain. Multiple therapeutic agents have been developed to at-
tempt to prevent the effects of pathological ROS production and 
accumulation and to reduce oxidative stress.

Idebenone can act as a potent antioxidant and electron shut-
tle in the respiratory chain, thus promoting ATP production 
and preventing oxidative damage by bypassing respiratory 
chain complex I. Studies of idebenone have predominantly 
occurred in LHON, and it has been conditionally approved 
for treatment in LHON in individuals 12 years and older by 
the European Medicines Agency. A randomised double-blind, 
placebo-controlled phase II study of individuals with LHON 
given idebenone treatment for 6 months failed to meet its 
primary endpoint (best recovery of visual acuity). However, 
on subgroup analysis, it was found that idebenone may have 

benefit for those individuals with discordant visual acuity 
[90]. Additionally, at follow-up 30 months after this study, it 
was found that the beneficial effect of idebenone persisted in 
this subgroup despite discontinuation [91]. Clinically relevant 
recovery was observed in 46% of individuals with subacute/
dynamic LHON in an expanded access program for long-term 
treatment (mean 25.6 months) where longitudinal data were 
available [92]. Subsequently, an international, open-label 
study in 199 individuals with LHON compared the use of ide-
benone over 24 months to an external natural history control 
cohort. It found favourable vision outcomes from idebenone, 
with the treatment effect varying depending on the disease 
phase and causative mtDNA variant, with the most consistent 
benefit seen in those individuals with the m.11778G>A variant 
[93]. These findings were supported by a meta-analysis [94]. 
A phase II trial in 16 individuals with OPA1-dominant optic 
atrophy found that best recovery of visual acuity improved 
following treatment with idebenone [95]. A phase IIa double-
blind, randomised, placebo-controlled, dose-finding study of 
idebenone for individuals with MELAS has been completed 
and did not meet the primary endpoint of change in cerebral 
lactate levels measured by magnetic resonance spectroscopy 
(MRS) (NCT00887562).

Vatiquinone (also known as PTC-743 and EPI-743) is another 
synthetic analogue of CoQ10, which can bind and modulate 
oxidoreductases. It has been reported to improve glutathi-
one balance and redox status [96] and was suggested to sup-
press ferroptosis, an iron-dependent form of cell death [97]. 
Vatiquinone has been evaluated in multiple small open-label 
studies with initial promising results. However, the results 
from larger randomized, double-blind studies are conflicting, 
with some failing to meet primary endpoints and others yet 
to be published. The first open-label study of vatiquinone in 
14 individuals with MD who were likely to progress to end-
of-life care within 90 days found that over 90% of individuals 
had significant clinical improvement and quality of life [96]. 
Following this, a phase IIa, open-label trial in 10 children 
with LSS found significant improvement in clinical outcome 
measures [98] with nine exhibiting arrested disease progres-
sion and/or reversal after 6 months of treatment. Another 
study examined the effect of vatiquinone in individuals with 
various MDs and found that there was an improvement in cer-
ebellar uptake of 99mTc labeled hexamethyl propylene amine 
oxime and clinical improvement in the Newcastle Paediatric 
Mitochondrial Disease Scale [99]. A small open-label trial of 
vatiquinone in five individuals with LHON resulted in ar-
rested disease progression and/or reversal of vision loss in 
four, with complete recovery of visual acuity in two [100]. A 
phase II randomized double-blind placebo-controlled clinical 
trial examining vatiquinone in children with LSS is yet to be 
published (NCT01721733/NCT02352896). However, a reduc-
tion in the number of individuals requiring hospitalization 
following treatment in comparison to those receiving placebo 
has been reported [101]. An open-label study of vatiquinone 
in five children with RARS2 deficiency found that all chil-
dren had a reduction in the frequency of their seizures [101]. 
In contrast, two double-blind clinical trials for vatiquinone in 
individuals with MD failed to meet their primary endpoints 
(NCT01642056 and NCT04378075), following which a small 
open-label trial in Pearson syndrome was terminated early 



10 of 23 Journal of Inherited Metabolic Disease, 2025

due to the results of the other studies not supporting continu-
ation (NCT02104336).

KH176 (Sonlicromanol) is an orally bioavailable derivative of 
vitamin E that exerts its antioxidant effect by targeting the thi-
oredoxin system [102]. A Phase IIa randomized, double-blind, 
placebo-controlled, two-way crossover trial (KHENERGY) 
of KH176 in 18 adults with MT-TL1 m.3243A>G related MD 
found that KH176 was well tolerated with no serious adverse 
events. While it failed to meet its primary outcomes (gait pa-
rameters), it did report positive effects on alertness and mood 
[103]. The phase IIb study (KHENERGYZE) included a ran-
domized controlled dose-selection study followed by a 52-
week open-label extension study. It failed to meet its primary 
endpoint of change from placebo in attention domain score 
of cognitive functioning. However, positive effects were noted 
in other domains including mood, balance control, quality of 
life, pain, and fatigue [104].

Cysteamine is an approved treatment for cystinosis. Cysteamine 
breaks down cystine, forming cysteine-cysteamine disulfide and 
cysteine, which is a precursor for the biosynthesis of the antiox-
idant glutathione [105]. Preclinical studies in models of MD sug-
gested that cysteamine could reduce oxidative stress [106, 107] 
but an open-label phase II trial examining delayed-release cys-
teamine bitartrate (RP103) in 36 children with MD followed by 
a long-term extension study was terminated due to lack of effect 
(NCT02023866 / NCT02473445). A multicenter, randomized, 
double-blind, placebo-controlled phase II trial of TTI-0102, a 
precursor to cysteamine, in individuals with MELAS is cur-
rently active, but not yet recruiting (NCT06644534).

N-acetylcysteine (NAC) is a precursor to the antioxidant gluta-
thione that is generally well tolerated and safe. NAC and/or L-
cysteine supplementation has been reported to improve survival 
in TRMU deficiency [108]. NAC has been used in combination 
with metronidazole in the treatment of ETHE1-related MD in an 
attempt to buffer the hydrogen sulfide load, with some reported 
clinical improvements [109].

3.5   |   Restoration of Nitric Oxide

Nitric oxide (NO) is formed during the conversion of arginine to 
citrulline by nitric oxide synthase (NOS) in vascular endothelial 
cells. Citrulline can subsequently be converted back to arginine 
via other enzymes. NO plays an important role in the balance 
of vascular smooth muscle tone, stimulating vasodilation and 
maintenance of blood flow through the microvasculature [110]. 
NO deficiency can occur due to inhibition of NOSs, depletion of 
arginine and citrulline, or sequestration of NO [111, 112]. NO de-
ficiency can result in decreased perfusion in the microvascula-
ture of different tissues, which may contribute to features in MD 
such as stroke-like episodes, myopathy, and headaches [110].

In children and adults with MELAS, L-arginine and L-citrulline 
supplementation have both been shown to increase NO produc-
tion [112, 113], with L-citrulline having a more pronounced 
effect. Reactive hyperaemic index, which is typically low in 
endothelial dysfunction, was measured in children and adoles-
cents with MD and increased with L-arginine and L-citrulline 

supplementation [110]. The provision of L-arginine in acute 
stroke-like episodes for individuals with MELAS has been rec-
ommended in a consensus statement from the Mitochondrial 
Medicine Society [114], but not by another expert group [115]. 
Current clinical practice varies worldwide. A series of open label 
studies of intravenous L-arginine administration during acute 
stroke-like episodes and prophylactic L-arginine supplemen-
tation in individuals with MELAS led to clinical improvement 
within the first 24 h of a stroke-like episode and decreased the 
frequency of episodes [116–118]. However, a systematic review 
of 37 studies and case reports concluded that there is not enough 
high-quality evidence to currently support this as treatment in 
MELAS in the acute phase or for prophylactic treatment [119], 
highlighting the need for robust clinical trials.

A retrospective analysis of the use of L-arginine in children with 
other MDs found that of the nine individuals who received intra-
venous arginine during a stroke-like episode there was a positive 
clinical response in 47% of episodes [120]. A randomised, cross-
over, open label clinical trial of L-citrulline and L-arginine in MD 
examining the reactive hyperaemic index has been completed, 
with results yet to be published (NCT02809170). NO exerts many 
of its functions via soluble guanylyl cyclase (SGC) receptors [121]. 
A phase IIb trial of zagociguat, a SGC stimulator in individuals 
with MELAS is currently recruiting (NCT06402123).

3.6   |   mTOR Inhibition and the Immune System

Mechanistic target of rapamycin (mTOR) is a key regulator of 
cellular homeostasis, including the regulation of mitophagy and 
the immune system [122]. Inhibition of mTOR by rapamycin was 
shown to prolong the lifespan of the Ndufs4−/− mouse model of 
LSS [123]. Subsequently, many other in vivo and cellular models 
of MD have supported this finding, with multiple downstream 
pathways including protein kinase C being implicated as a con-
tributory mechanism (Table  S1). mTOR inhibitors have been 
trialled in small numbers of individuals with MD with variable 
effect. Two children with MD were treated with everolimus (a 
rapamycin analogue) with conflicting results. One child was a 
girl with LSS secondary to a homozygous variant in NDUFS4 
who, following treatment, had clinical and neuroradiological 
improvement. In contrast, the other child who had MELAS did 
not show any improvement and continued to deteriorate [124]. 
Four additional individuals with MELAS were also treated with 
everolimus or rapamycin following kidney transplant, resulting 
in improvement in clinical parameters in all four individuals 
[125]. A phase II trial to assess the safety and tolerability of ABI-
009 (nanoparticle albumin bound sirolimus) in children with 
LSS has been terminated due to withdrawal of a corresponding 
Investigational New Drug application (NCT03747328).

Recent work in a Ndufs4−/− mouse model of LSS has provided 
more evidence for the beneficial effects of mTOR inhibition in 
modulating immune system dysregulation in the pathogenesis of 
MD [122]. Ndufs4−/− mice were treated with a colony-stimulator 
factor 1 inhibitor to deplete leukocytes, which resulted in the 
rescue of both the central nervous system (CNS) and systemic 
disease phenotype [122]. There are numerous anecdotal reports 
in MD reporting the beneficial effect of other immune modu-
lating therapies, for example, intravenous immunoglobulin and 
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corticosteroids, but there have been no clinical trials to date 
[126]. A cohort study reviewing interferon signaling in a diverse 
group of individuals with MD reported that the expression of 
interferon stimulated genes was upregulated to levels similar 
to those in primary interferonopathies [127]. The expression of 
interferon stimulated genes has the potential to be a biomarker 
for MD but also a potential therapeutic target. JAK inhibitors 
have been utilized in type I interferonopathies [128] and have 
the potential to be used as a therapeutic option for individuals 
with MD and dysregulated interferon signaling, for example, 
ATAD3A-related disease [129].

3.7   |   Maintaining Mitochondrial Membranes, 
Dynamics and Shape

Mitochondria undergo continuous cycles of fusion and fission 
to maintain mitochondrial shape and mass and to ensure a 
balanced composition of mitochondrial contents. This is reg-
ulated by the activity of pro-fusion proteins (MFN1, MFN2, 
and OPA1) and pro-fission proteins (DRP1 and FIS1) [130]. 
Overexpression of OPA1 has shown improvement in mi-
tochondrial respiratory capacity by stabilizing respiratory 
chain supercomplex formation [131, 132] and has amelio-
rated the clinical phenotypes of different mouse models of 
MD [132, 133]. MFN2 activation via allosteric MFN2 agonists 
promoted mitochondrial fusion and normalized axonal mito-
chondrial trafficking in the Mfn2 mouse model of Charcot–
Marie-Tooth type 2A [134, 135].

Elamipretide interacts with the phospholipid cardiolipin in 
the inner mitochondrial membrane, preserving the mitochon-
drial cristae structure and respiratory chain supercomplex for-
mation, resulting in improved ATP production and reduced 
ROS formation in models of impaired mitochondrial function 
[136] (Table S1). Phase I/II clinical trials of elamipretide in MM 
showed promising results in improving exercise performance in 
the 6MWT, a reduction in reported fatigue and muscle symptoms, 
and was generally well tolerated [137, 138]. However, the phase 
III trial in MM failed to meet its primary endpoints after 24 weeks 
and thus was terminated prior to the extension phase [139]. 
TAZPOWER was a phase II/III, 28-week, randomized, double 
blind, placebo-controlled crossover trial of elamipretide in 12 in-
dividuals with Barth syndrome followed by a 168-week open label 
extension, with eight individuals reaching the endpoint. Initial 
findings from the blind phase found that there was no significant 
change in distance in the 6MWT or in the Barth syndrome symp-
tom assessment (BTHS-SA) total fatigue score [140] despite im-
proved metabolomic profiles [141]. However, at 168 weeks, there 
was significant improvement in 6MWT, BTHS-SA total fatigue 
score, and left ventricular stroke volume [142]. Comparison to 
matched natural history controls supported the findings [143]. A 
case series of elamipretide use in children with MD reported that 
it was safe and well tolerated [144].

3.8   |   Restoring mtDNA Synthesis

Maintenance of mtDNA is reliant on nuclear-encoded proteins 
that are involved in either the mtDNA replication machinery, 
mitochondrial dynamics, or maintenance of nucleotide pool 

balance. Thymidine kinase 2 (TK2) is a key enzyme involved 
in the mitochondrial nucleotide pool maintenance for mtDNA 
synthesis. Studies in a Tk2 murine model have shown that de-
oxynucleoside supplementation bypasses the enzymatic block, 
restores mtDNA copy number, and improves clinical pheno-
types [145, 146]. An international multicentre compassionate 
use program examined the use of nucleoside supplementation 
in 16 children and adults with TK2 deficiency [147]. Those 
with severe early onset disease had the most significant ben-
efit from nucleoside supplementation with improved survival 
and motor function, although those with childhood and later 
onset disease still had some benefits, including stabilisation 
or improvement of their clinical features [147]. Similar strate-
gies have been utilised in pre-clinical models of other mtDNA 
maintenance disorders, such as DGUOK [148], RRM2B [149], 
and POLG [150] deficiency, although no studies in humans 
have been completed to date. A phase II open-label trial of 
deoxynucleoside supplementation in individuals with mtDNA 
depletion syndromes is currently recruiting (NCT04802707) 
[151]. Interim data showed good tolerance and some improve-
ment in Newcastle Mitochondrial Disease Scale scores [151]. 
However, the interpretation of these interim findings is lim-
ited given the clinical trial design.

Mitochondrial neurogastrointestinal encephalopathy (MNGIE) 
is caused by bi-allelic loss of function TYMP variants resulting 
in a defective thymidine phosphorylase (TP) enzyme causing 
an accumulation of thymidine. Erythrocyte-encapsulated 
TP (EE-TP) is proposed as a potential bridging therapy for 
MNGIE. It involves the ex vivo encapsulation of the recombi-
nant Escherichia coli enzyme TP in autologous erythrocytes, 
which are then infused back into the individual [152]. The TP 
then catalyzes the metabolism of the deoxyribonucleosides 
in the blood, which reduces the level of these metabolites not 
only in blood but also in other organs. EE-TP has been used in 
individuals with MNGIE with reported improvement in clin-
ical features such as muscle strength and weight gain [153]. 
A phase II open-label trial examining the safety, tolerability, 
and efficacy of EE-TP in MNGIE has recently been withdrawn 
(NCT03866954).

3.9   |   Solid Organ and Stem Cell Transplantation

Liver transplantation has been reported to have some success in 
MD with predominant liver involvement; however, it remains 
controversial given that liver transplant does not correct the 
neurological or extra-hepatic disease that often accompanies 
liver involvement in these disorders [154]. Case reports and 
single-centre experiences of individuals with MD [155], predom-
inantly mtDNA maintenance disorders including DGUOK de-
ficiency [156, 157], non-Alpers POLG-related disease [154, 158] 
and MPV17 deficiency [159] who have undergone liver trans-
plant have mixed outcomes. Liver transplant for individuals 
with MPV17 deficiency has been reported to be effective only 
in late-onset and mild phenotypes [159] with high mortality re-
ported in children [160].

Consensus guidelines on the management of MNGIE have sug-
gested considering either haematopoietic stem cell transplant 
(HSCT) or liver transplant as a permanent treatment option 
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for replacing thymidine phosphorylase activity and that the 
decision would depend on multiple patient- and centre-related 
factors and experience, given the high risk of morbidity and 
mortality especially with HSCT [161]. Liver transplant has also 
been performed in a small number of individuals with ethylma-
lonic encephalopathy [162] with the rationale that the liver can 
replace the defective ETHE1 enzyme, reducing the accumula-
tion of toxic hydrogen sulfide.

3.10   |   Mitochondrial Augmentation Therapy

Mitochondrial augmentation therapy (MAT) involves enrich-
ing autologous CD34+ hematopoietic stem cells (HSCs) with 
isolated mitochondria derived from healthy donor white blood 
cells or placenta prior to reinfusing back into the affected in-
dividual. Recently, multiple approaches including bone mar-
row transplantation and administering isolated mitochondria 
from wild-type mice or humans were reported to improve mor-
bidity and mortality in an Ndufs4−/− LSS mouse model [163]. 
Small open-label compassionate use studies have reported the 
use of MAT in single large scale mtDNA deletion syndromes 
(SLSMDS) with some individuals improving in some clinical 
parameters [164–166]. However, it is difficult to interpret these 
results given the small number of individuals and the inherent 
bias involved in open-label studies. A phase I/II clinical trial 
to evaluate the safety and efficacy of MAT in children with 
Pearson syndrome has been completed with results yet to be 
published (NCT03384420). Treatment with autologous mesan-
gioblasts (MABs) is currently being explored in a phase II trial 
(NCT05962333) in adults with m.3243A>G-related MM given 
the tendency of MABs to have lower levels of variant mtDNA 
compared to skeletal muscle [167].

3.11   |   Other Therapeutic Approaches

Dichloroacetate (DCA) stimulates the activity of pyruvate dehy-
drogenase complex (PDHC) by inhibiting pyruvate dehydroge-
nase kinase (which inactivates PDHC). DCA has been shown to 
reduce postprandial or exercise blood lactate in individuals with 
congenital lactic acidosis and other MD; however, it did not re-
sult in improved clinical outcome measures [168, 169]. A double-
blind, placebo-controlled, randomized clinical trial of DCA in 
individuals with MELAS was terminated due to worsening pe-
ripheral neuropathy in many individuals [170]. Phenylbutyrate, 
another inhibitor of pyruvate dehydrogenase kinase, has been 
shown to increase PDHC activity in vitro and in vivo [171, 172]. 
A phase II open-label clinical trial investigating the safety 
and the effect of phenylbutyrate on blood lactate in individ-
uals with PDHC is completed, with results yet to be published 
(NCT03734263).

Pyruvate supplementation has been proposed to rebalance NAD+/
NADH levels in MD. While case reports and small case series 
have reported that pyruvate supplementation has a positive effect 
on biochemical markers and clinical outcomes in some individ-
uals with MD, a systematic review of pyruvate supplementation 
concluded that there was little evidence to support pyruvate sup-
plementation in PMD [173]. The combination of pyruvate and uri-
dine ameliorated the OXPHOS defect in patient-derived fibroblasts 

from a diverse range of MD and in an in vivo lethal rotenone model 
in zebrafish [174], highlighting the need for further studies.

Taurine is another potential option in the treatment of MELAS. 
It can modify taurine-containing uridines of the anticodons of 
some mitochondrial tRNAs to enhance appropriate synthesis 
of mitochondrial proteins [175]. Other proposed mechanisms 
include maintenance of calcium concentration and decreas-
ing superoxide generation [176]. Taurine supplementation in 
an open-label trial of 10 individuals with MELAS significantly 
reduced the annual relapse rate of stroke-like episodes. Sixty 
percent of individuals met the primary endpoint (complete pre-
vention of stroke-like episodes) [177].

OMT-28 is a synthetic omega-3 epoxyeicosanoid and has been 
proposed to prevent hypoxia/reoxygenation-induced mitochon-
drial dysfunction and inflammasome activation in cultured 
cardiomyocytes and isolated mouse hearts exposed to stressors 
[178]. A phase IIa open-label clinical trial in adults with mtDNA 
disease is currently underway (NCT05972954).

In vivo and in  vitro studies have shown that chronic hypoxia 
(11% O2) can benefit mitochondrial function and can rescue the 
neurological phenotype of the Ndufs4−/− LSS mouse model [179]. 
Further work reported that moderate hypoxia or intermittent hy-
poxia did not have the same benefit [180]. The Ndufs4−/− mouse 
displayed impaired oxygen consumption and brain tissue hyper-
oxia. Strategies that normalised the brain hyperoxia (anaemia, 
carbon monoxide) rather than activating the hypoxia transcrip-
tional response reversed the neurological phenotype. This led 
the authors to suggest that the unused oxygen may be a driver of 
pathology, so therapeutic strategies that decrease oxygen deliv-
ery may be protective [181]. These data are all pre-clinical and 
need to be validated in further in vivo or human studies, which 
may be highly challenging.

Red light therapy is the use of low energy lasers to radiate 
tissue with light at near infrared (NIR) range (630–1000 nm). 
It has been suggested that NIR light therapy improves mito-
chondrial function via stimulation of cytochrome c oxidase, en-
hancing ATP production [182]. There are no published studies 
of NIR light therapy in individuals with MD. An open label 
trial of NIR therapy in four individuals with LHON examined 
the use of 630 nm wavelength laser emission to the closed eye 
for 80 s twice daily for 12 months but was terminated as they 
were unable to obtain the primary outcome measurements 
(NCT01389817). The Red Light in Mitochondrial Disease Study 
(REaLMS) is aiming to examine whether exposure to NIR light 
therapy improves the muscle function and mobility of indi-
viduals with MD due to the pathogenic m.3243A>G mtDNA 
variant.

4   |   Gene and Genetic Therapies

Gene therapy is still an emerging field for nearly all MD except 
LHON. There are several different approaches to gene therapy, 
including gene replacement therapy, RNA-based therapy that 
can be used to either function similarly to gene replacement 
therapy or to silence the expression of genes, and gene or base 
editing shown in Figure 2 [183]. Gene therapy can be delivered 
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in vivo (delivered directly into the individual) or ex vivo (gene 
therapy is delivered to relevant cells that have been removed 
from the individual which are then re-infused following gene 
replacement or editing). Gene therapy can be delivered through 
non-viral approaches, which may include chemical methods 
and utilizing endogenous mitochondrial import machinery, or 
more commonly in viral vectors, such as adeno-associated virus 
vectors (AAVs) [183]. The approach to gene therapy in MD is 
dependent on whether the disease variant is in nuclear DNA 
or mtDNA.

4.1   |   Nuclear Gene-Associated Mitochondrial 
Disease

4.1.1   |   Gene Replacement

Most pre-clinical studies of gene therapy in MD have utilized 
the viral vector recombinant AAVs (rAAVs) for gene replace-
ment therapy. AAVs are small viruses that consist of a capsid 

and single-stranded DNA. The AAV DNA can be replaced by 
a therapeutic transgene which, when released from the rAAV 
capsid in the nucleus of a cell, is converted into double-stranded 
DNA, which is subsequently transcribed and translated, allow-
ing for expression of the transgene. As they are episomic, they 
persist long-term as extrachromosomal DNA and have a low risk 
of integrating into the host genome. However, this lack of inte-
gration can result in vector genome dilution in mitotically active 
tissues. There are multiple different naturally occurring AAV 
capsid serotypes that have been studied, all having different cell 
and tissue tropism [184].

rAAVs have been examined in over 12 mouse models of nuclear-
encoded MD, including Ant1 [185], Aifm1 [186], Dguok [187], Ethe1 
[188], Mpv17 [189], Ndufs4 [190–192], Tymp [193–195], Opa1 [196], 
Tafazzin [197, 198], Ndufs3 [199], Slc25a46 [200], Fdxr [201], Tk2 
[202], and Surf1 [203]. While results in mouse models have been 
promising, they have also highlighted the challenges in translat-
ing gene replacement therapy into clinical practice, with none pro-
gressing to clinical trials in humans to date.

FIGURE 2    |    Gene and genetic therapies proposed as targeted treatments of mitochondrial disease. This schematic illustration outlines the 
different proposed gene therapies for treatment of mitochondrial disease. The mitochondria are shown in green, and the nucleus is shown in 
grey. Therapeutic approaches for nuclear gene-associated disease are represented by blue rectangles. Therapeutic approaches for mtDNA gene-
associated disease are represented by green rectangles. Detailed mechanisms of action can be found in relevant sections of the text. AAV, adeno-
associated virus; ASO, antisense oligonucleotide; DdCBEs, DddA-derived cytosine base editors; dsDNA, double-stranded DNA; mitoARCUS, 
mitochondrial-targeted ARCUS; mitoREs, mitochondrial-targeted restriction endonucleases; mito-TALENs, mitochondria-targeted transcription 
activator-like effector nucleases; mRNA, messenger RNA; MTS, mitochondrial targeting sequence; mtZFNs, mitochondrial-targeted zinc finger 
nucleases; RISC, RNA-induced silencing complex; rRNA, ribosomal RNA; siRNA, small interfering RNA; ssDNA, single-stranded DNA; TALEDs, 
TALE-linked deaminases; tRNA, transfer RNA. Created in BioRender. Christodoulou, J. (2025) https://​BioRe​nder.​com/​j08l091.

https://biorender.com/j08l091
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Multi-organ transduction by gene therapy would be essential 
in most MDs and is limited by the route of administration and 
AAV serotype tropism. Diseases with a predominant neuro-
logical phenotype require CNS transduction, which has only 
been achieved in mouse models with invasive routes such as 
intrathecal or intracerebroventricular, or with the AAV PHP.B 
vector, which does not transduce the human CNS as it does in 
the mouse models [199, 200]. This has necessitated the develop-
ment of other delivery methods such as lipid-based nanocarriers 
whose potential to traverse the blood brain barrier needs to be 
further explored [204]. The AAV vector genome is limited to a 
size of 4.7 kb, so full length transgenes larger than that would 
not be amenable to rAAV gene replacement therapy. Another 
challenge is that mouse models of MD do not always recapit-
ulate the human phenotype, meaning that therapeutic effects 
can be difficult to interpret [203, 205]. Immune response to AAV 
vector-based gene therapy, usually in the context of neutralis-
ing antibodies, can result in some individuals having a reduced 
response to treatment [206, 207]. Additionally, safety consid-
erations have been raised with recent reported severe adverse 
effects in individuals with other monogenic conditions treated 
with intravenous high dose AAV-based gene replacement ther-
apy [208, 209].

4.1.2   |   RNA-Based Therapies

RNA-based therapies can function either by providing the trans-
gene in the form of mRNA or by modulating gene expression 
via antisense oligonucleotides (ASOs), small interfering RNAs 
(siRNAs), or microRNAs, amongst others. Autosomal dominant 
phenotypes that are secondary to gain-of-function or dominant-
negative effects may be amenable to ASOs or siRNAs. ASOs 
are short single-stranded oligonucleotides that can affect gene 
expression via RNA degradation, inhibition of translation, or 
modulation of splicing [210]. ASOs were used to target OPA1 
mRNA in patient fibroblasts, promoting nonsense-mediated 
decay of the nonproductive OPA1 mRNA, increasing expression 
of the functional protein and improving mitochondrial respira-
tory chain function [211], leading to a first-in-human clinical 
trial that is currently recruiting (NCT06461286). Interestingly, 
ASOs targeting DRP1 restored mitochondrial morphology in 
Mfn2−/− mouse embryonic fibroblasts [212]. siRNAs are small 
double-stranded oligonucleotides that decrease or silence gene 
expression predominantly via RNA-induced silencing complex. 
Targeted delivery of RNA-based therapies has challenges, es-
pecially in MD. Whilst RNA-based therapies have not yet pro-
gressed to clinical trials in MD, there are some that have had 
successful translation into clinical practice for other conditions, 
for example, nusinersen for the treatment of spinal muscular at-
rophy [213].

4.1.3   |   Gene Editing

CRISPR-Cas9 mediated gene editing has been used in a Tymp 
mouse model [214] and OPA1 iPSC model [215], with success in 
demonstrating gene correction and restoration of mitochondrial 
homeostasis. The utility of CRISPR-Cas9 is limited to nuclear 
genes given the inability of mitochondria to import the guide 
RNA upon which CRISPR-Cas9 systems rely.

4.2   |   Manipulation of the Mitochondrial Genome

4.2.1   |   Allotopic Expression

Allotopic expression is the expression of a mtDNA transgene in the 
nucleus with the translated protein subsequently imported into 
the mitochondria by the inclusion of a mitochondrial-targeting 
sequence (MTS). It requires recoding to correct specific mtDNA 
codons that do not use the universal genetic code. The allotopic 
expression method was used to rescue mitochondrial respiratory 
chain function in cybrids containing the pathogenic MT-ATP6 
m.8993T>G variant [216] and was subsequently shown to im-
prove visual function and prevent retinal cell degeneration in a rat 
model of LHON [217]. The delivery of a MT-ND4 transgene in an 
AAV2 vector has been studied in individuals with LHON caused 
by the pathogenic m.11778G>A variant. Multiple clinical trials 
have shown that intravitreal injections of rAAV2-ND4 are associ-
ated with improved visual acuity [218–227] and are generally well 
tolerated with minimal adverse effects [228]. Bilateral visual im-
provement after unilateral injection has been well reported. This 
unexpected finding in the contralateral eye has contributed to de-
lays in approval given the difficulty of interpreting the effect of 
treatment without controls. A recent meta-analysis has proposed 
that individuals with LHON who received intravitreal injections 
of AAV2 gene therapy (lenadogene nolparvovec) showed a better 
clinically relevant recovery rate compared to those treated with 
idebenone or those who were historically untreated [94].

4.2.2   |   RNA-Based Therapies

Several approaches to RNA-based therapies have been proposed 
for mtDNA disorders, including transfecting wild-type mRNA, 
tRNA, or rRNA into mitochondria to rescue mitochondrial re-
spiratory function [229, 230], modulating mitochondrial gene 
expression via ASOs or siRNAs [231], and using antireplicative 
RNA molecules to shift heteroplasmy in cells [232–234]. To our 
knowledge, these therapies have only been examined in in vitro 
models and are yet to progress to in  vivo models of MD. The 
main challenge is the delivery of these therapeutic agents into 
the mitochondria. Possible methods include direct import using 
a mitochondrion-targeted carrier, such as the liposome-based 
nanocarrier MITO-porter [235]. However, further work is re-
quired to determine if these methods are effective in vivo.

4.2.3   |   Heteroplasmy Shifting

Shifting heteroplasmy to favor wild type mtDNA is a potential 
therapeutic approach to mtDNA disease. Strategies postulated 
to achieve this include eliminating variant mtDNA by introduc-
ing double strand breaks (DSBs), base editing, and selectively 
stalling mtDNA replication using antireplicative machinery 
with either peptide nucleic acid oligomers [236] or antireplica-
tive RNA molecules, as described above.

mtDNA rapidly degrades in response to DSBs, a mechanism that is 
exploited by the use of nucleases to attempt to shift heteroplasmy. 
Mitochondrially targeted restriction endonucleases (mitoREs) 
target the unique restriction sites associated with some patho-
genic mtDNA variants to create site-specific DSBs, resulting in 
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mtDNA degradation and heteroplasmy shift [237, 238]. MitoREs 
are limited as not all pathogenic mtDNA variants are associated 
with unique restriction sites. Engineered programmable mito-
chondrially targeted nucleases, transcription activator-like effec-
tor nucleases (mito-TALENs) [239–241] and zinc finger nucleases 
(mtZFNs) [242–245] have been shown to induce the elimination 
of variant mtDNA in in vitro and in vivo models of mtDNA dis-
ease. The ZFNs and TALENs direct the endonuclease to specific 
mtDNA sequences containing mtDNA point mutations or dele-
tions. mtDNA targeted meganuclease (mitoARCUS) is a bacterial 
endonuclease that is engineered to create site-specific DSBs. The 
use of mitoARCUS resulted in almost complete elimination of 
mutant mtDNA in human MT-TL1 m.3243A>G cybrid cells with 
associated improved mitochondrial respiration [246] and in a 
m.5024C>T mouse model [247]. While these strategies are prom-
ising for heteroplasmic variants and need to be further explored, 
they will not be applicable for homoplasmic variants as their use 
would most likely result in near complete elimination of mtDNA.

Base editing techniques have been proposed to introduce specific 
nucleotide changes into mtDNA without requiring DSBs and 
therefore to potentially shift heteroplasmy levels. Due to the dif-
ficulties importing RNAs into mitochondria, CRISPR-free base 
editing strategies have been used to edit or introduce variants 
into the mtDNA genome in in vivo and in vitro models. These 
strategies include DddA-derived cytosine base editors (DdCBEs) 
[248–254] or zinc finger DdCBEs (ZF-DdCBEs) [255] for C-to-T 
transitions and TALEN-linked deaminases(TALEDs) [256] for A-
to-G transitions. Off-target base editing has been reported [257] 
and strategies to prevent this are needed, as demonstrated in a 
recent study that showed promising clinical and biochemical im-
provement in a mouse model of mt-tRNA(Ala) dysfunction [258].

4.3   |   Prevention of mtDNA Disorders

Given the current lack of treatment for MD, providing reproduc-
tive options for families to prevent transmission is important. For 
mtDNA disorders, determining the most appropriate reproduc-
tive option is difficult given the complexity of mtDNA inheritance 
and the lack of strong genotype–phenotype correlation for most 
variants. Prenatal diagnosis and preimplantation genetic testing 
may be considered for some women with low to moderate hetero-
plasmy levels but are not suited for those with high heteroplasmy 
or homoplasmy [259]. Studies exploring mitochondrial replace-
ment therapy (MRT) are underway in the United Kingdom and 
Australia. MRT involves the removal of a nucleus from either a 
zygote (pronuclear transfer) or an oocyte (maternal spindle trans-
fer), which is subsequently placed into an enucleated cell from a 
donor with normal mtDNA at the same embryonic stage [260].

5   |   Conclusions

The future of MD therapies holds promise, with advances in innova-
tive approaches progressing in parallel with increasing knowledge 
of the pathophysiological mechanisms underlying MD. However, 
implementation of these therapeutic strategies still presents signif-
icant challenges. The genetic diversity of MD and complexity of mi-
tochondrial physiology make developing a one-size-fits-all approach 
difficult, and tailored, gene-specific therapies require significant 

investment and infrastructure for development. Gene and RNA-
based therapies are considered one of the most promising avenues, 
offering the potential to directly address the underlying genetic de-
fect. However, given the sheer number of genes (> 400) [14] currently 
associated with MD, translation to clinical practice is impeded by 
the rarity of each MD, availability of funding, complexity of develop-
ment and implementation, and the requirement for targeted-delivery 
systems to improve efficacy and mitigate off-target effects.

The integration of genomic sequencing into standard clinical 
practice has allowed for the creation of large cohorts of individ-
uals with genetically confirmed MD. This is essential for devel-
oping comprehensive natural history data and the adequately 
powered international clinical trials required to create an evi-
dence base for emerging therapeutic strategies. Novel MD bio-
markers such as interferon signaling genes or those identified by 
metabolomic strategies have the potential to be used as reliable 
measures of treatment efficacy. However, clinically meaning-
ful outcome measures need to be further developed and vali-
dated in natural history cohorts to be useful for clinical trials. 
Overcoming these barriers will be critical in the development of 
personalized therapies to provide hope for those affected by MD.
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